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ABSTRACT
We propose a novel multi-sensor data fusion approach called
DyFusion for maritime vessel recognition using long-wave
infrared and visible images. DyFusion consists of a decision-
level fusion of convolutional networks using a probabilistic
model that can adapt to changes in the scene. The probabilis-
tic model avails of contextual clues from each sensor deci-
sion pipeline to maximize accuracy and to update probabili-
ties given to each sensor pipeline. Additional sensors are sim-
ulated by applying simple transformations on visible images.
Evaluation is presented on the VAIS dataset, demonstrating
the effectiveness and robustness of DyFusion with a reliable
accuracy of up to 88% in hard scenarios.

Index Terms— maritime vessel recognition, sensor fu-
sion, convolutional neural networks, probabilistic models

1. INTRODUCTION

The use of multiple sensors provides better results in many
tasks such as face [1], activity [2] and maritime vessel recog-
nition [3]. If a set of homogeneous sensors are used, the un-
certainty about the measurements is reduced due to the law
of large numbers. If a set of heterogeneous sensors are used,
complementary data from each sensor improves the predic-
tion of hidden variables by conditioning the prediction to the
independent observations from each sensor. Unfortunately,
the best way to combine multi-sensor data for a task is often
unintuitive and there is no ideal approach for each circum-
stance [4]. Hence, many multi-sensor data fusion1 approaches
have been published over the years.

The Joint Directors of Laboratories (JDL) Data Fusion
Working Group defines a terminology for six subprocesses
used in sensor fusion. We focus on L1 and L4: recogniz-
ing and adapting the fusion model to changes in the scene. A
technical description of JDL subprocesses can be found in [4].
We also focus on the long-wave infrared (LWIR2) and visible
images for maritime vessel recognition when evaluating Dy-
Fusion. Vessel recognition is an important task for safety and
regulation enforcement, specially because many products are

1For simplicity, we shortened the term to sensor fusion in this paper.
2Abbreviated to IR in the rest of this paper.
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Fig. 1: Overview of DyFusion. The inference receives data from sen-
sors and outputs probabilities over vessel labels. The fusion updates
the sensor probabilities using contextual data.

transported via ocean [3]. IR images provide invariance to
changes in lighting resulted from atmospheric conditions and
from images acquired in various times during the day. For
instance heat emitted by the boat internal combustion motor
improves its visibility in the IR spectrum during night.
Overview. DyFusion is depicted in Fig. 1 and consists of
two steps: inference and fusion. In the inference, the inputs
are RGB and IR images. We use RGB transformations to
simulate additional sensors and to improve the classification
accuracy. The data from each sensor is presented to a pre-
trained convolutional neural network (CNN) with a logistic
regression at the last layer. The inference outputs probabilities
over maritime vessel classes for each input sensor.

In the fusion, we calculate contextual data from the infer-
ence (CNN activation norm, contrast, size and symmetry of
the input images). The contextual data is used on a proba-
bilistic model to determine a confidence score for the proba-
bilities calculated in the inference. Lastly, confidence scores
and inference probabilities are combined and used to update
the probabilistic model of each input sensor in the fusion.
Contributions. The highlights of this work are:
1) Simulating additional sensor data using image transforma-
tions to improve the classification robustness.
2) Using contextual information to calculate classification
confidence of the CNNs predictions.
3) Updating the confidence on CNNs based on the available
contextual information.
4) Carrying out experiments to demonstrate the robustness of
DyFusion when the test conditions change (image size, con-
trast, signal to noise ratio).
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2. RELATED WORKS

Sensor fusion systems can be split considering whether fu-
sion happens at the acquisition level [5, 6, 7, 8], at the
feature description level [9, 10, 11, 12] or at the decision
level [13, 14, 15]. We consider fusion at the decision level
since the primary goal of DyFusion is to be robust to changes
during operation and it is an easy strategy to simply dis-
card sensor decisions with low confidence scores. We also
calculate contextual information at each step of the decision
pipeline for each sensor to estimate the prediction confidence
and to update the fusion model. We briefly describe works
that are closer to DyFusion in the next paragraphs. A compre-
hensive review of general sensor fusion can be found in [2].

The probabilistic model we use is similar to Beyca et.
al. [6] work on non-parametric sensor fusion. Similarly, our
probabilistic model aims at estimating a distribution of a tar-
get hidden random variable. In our case, the target is the opti-
mal classification confidence conditioned to contextual infor-
mation. In [6], the targets are drifting and anomaly on ultra-
precision machining (UPM) conditioned to the sensor data.
The non-parametric approach used by Beyca et. al. is based
on the Dirichlet process and our approach is based on an en-
semble of Gaussian distributions. The number of components
in our Gaussian ensemble is a DyFusion parameter and the
Dirichlet process may be considered to implement DyFusion
without having to specify the number of components.

Li et. al. [13] use an ensemble of CNNs and a Dempster-
Shafer (DS) approach to combine predictions from each
CNN. DyFusion differs from [13] on the use of a probabilis-
tic fusion approach. DS may produce counterintuitive re-
sults when representing incomplete data and when updating
rules [16]. We also consider updating the fusion model, which
is not considered in [13]. Methods to update the rules in DS
can be found in [15] and may be used for comparison.

It is worth to mention at least one work about fusion of in-
frared and visible images since our work is evaluated on this
type of data. Most works on IR and visible image fusion in
the literature focus on face recognition due to IR images be-
ing capable of solving many issues in traditional face recog-
nition [1]. The deep perceptual mapping from Sarfraz and
Stiefelhagen [9] consists of projecting IR and visible images
onto a common discriminative latent space by using CNNs as
the mapping function. An alternative approach is to map each
input sensor image into individual features and later use a fea-
ture combination approach [10]. As demonstrated on a recent
work [17], both approaches present similar results, hence, we
consider individual sensors since it is easier to devise an al-
gorithm to update the confidence scores for each input sensor
data in this manner.

There are many works on IR/visible data fusion that we
do not discuss here due to lack of space. For a recent review
on IR/visible face recognition, we recommend the survey by
Ghiass et. al. [1].

3. TECHNICAL APPROACH

The following paragraphs refer to the steps presented in Fig 1
and briefly described in Section 1. The following notation is
used in this section:

y : class label (ground truth).
ŷ(i) : predicted label from the i-th element of ~p.
S : set of input sensors.
~p: probability vector of labels from the fusion step.
~ps: probability vector of labels from the s-th sensor.
~αs: confidence score of labels from the s-th sensor.
Cs : set of contextual values calculated for sensor s.

Image transformations. The idea is to simulate additional
data for the sensors by applying simple image transforma-
tions. Our hypothesis is that the additional data will increase
the classification accuracy by providing robustness to light-
ing conditions even though the transformed images are highly
correlated. We consider only the visible images and the trans-
formations are from RGB to grayscale, each of the visible
components (red, green and blue) and the pixel intensity ratio
between blue and green (B/G), blue and red (B/R), and green
and blue (G/R). The intuition for using the ratio between visi-
ble components is due to its invariance to lighting conditions.

Convolutional Neural Network (CNN). We use a similar
approach as the one described in [3]. The CNN architec-
ture is the very deep convolutional network with 19 layers
(VGG19) [18] pre-trained on the ImageNet dataset [19]. We
also tested with the VGG16 and ResNET architectures but
they resulted in lower accuracy. We ignore the last layer (soft-
max) by taking the output of the last convolutional (max pool-
ing with 25, 088 features) as features to train a maximum mar-
gin logistic regression [20]. We normalize the features to unit
length and we use the original norm of the feature as one of
the contextual variables. The IR, RGB and transformed im-
ages are presented to VGG19 even though the network was
not pre-trained on the IR or in the transformed images. Im-
ages are resized to 224 by 224 pixels regardless of the aspect
ratio. The parameters used are summarized in Table 1.

Image size: (224, 224, 3)
Class weight: 1/mi (mi: samples from class i)

Cost parameter (C): 1024
Regression type: L2-regularized logistic regression
VGG19 features: 25, 088 – ReLU (range [0,∞])

Table 1: CNN and logistic regression parameters.

Contextual information. We calculate four contextual vari-
ables: image size, contrast, symmetry and norm of the acti-
vations from CNN. Image size is simply width × height and
the intuition is that the image size provides information on
whether there is enough information in the image to classify
it. Contrast is calculated as the variance of pixel intensities in
the grayscale version of the input image: (|I|−1)−1

∑
i∈I(i−

ī)2, where I is set of pixel intensities and ī is average in-
tensity of I . Symmetry is calculated by reflecting a sliding



window horizontally in the image and taking the sum of ab-
solute differences between average intensities in each win-
dow (image size 224 × 224, window size 32 × 32, stride
8× 8). The contextual values v are normalized such that they
lie on the interval [0, 1]. We use a min-max normalization:
max(0,min(1, (v−vmin)/(vmax−vmin))), where vmin and
vmax are calculated using the training samples. The psi values
are also modeled as if they were contextual values.
Sensor fusion model. The idea is to calculate αs

i as
Pr
(
(ŷ(i) = y) ∩ Cs

)
and to combine it with ~ps to calculate

~p. Specifically, ~p =
∑

s∈S ~p
s � ~αs, where ~p sums to one and

� denotes element-wise multiplication. The intuition is that
we should probably lower psi if we observe a small chance of
ŷ(i) = y and a particular Cs. For instance, if we observe that
the predicted label is often wrong if the contrast of the image
is low, even if psi is close to one, we should probably set αs

such that psi is closer to 0. In practice, we observe a confusion
in ps among multiple labels and we use the contextual infor-
mation to reduce the confidence of some predictions based on
contextual information we observed during training and test.
Given ~p, the predicted label is calculated as ŷ

(
arg maxi(~pi)

)
.

The confidence score is calculated as:

αs
i =

∑
c∈Cs

∑
b=1:B

δi,b,s exp
(
− (c− µb)

2

2σ2

)
, (1)

where δi,b,s = Pr
(
ŷ(i) = y|c

)
. Equation 1 is derived from

Pr
(
(ŷ(i) = y)∩Cs

)
. δi,b,s is estimated from the training set

using cross-validation and it is updated for each test sample
following the sensor confidence update step described in the
next paragraph. We use an ensemble of B Gaussian distri-
butions with fixed variance σ2 = 0.01 and mean uniformly
distributed in the interval [0, 1] (assuming 0 ≤ c ≤ 1). We
evaluated B ∈ (5, 10, 15, 30) and found no significant dif-
ference in the results with B between 5 and 15. Hence, we
assign B = 5 in this work.
Sensor confidence update. The goal is to estimate δi,b,s in
Equation 1. We initialize the probability δi,b,s as 0.5 and we
use an exponentially weighted rule to update δi,b,s for training
and test samples. Specifically, δt+1

i,b,s = δti,b,sλ + (1 − λ)z,
where λ ∈ R, 0 ≤ λ ≤ 1, is the forgetting factor and z is
the observed probability to be updated. Updating values is
carried slightly different between training and test. During
training, λ is empirically set to 0.95 and z to 1, if the training
sample matches the ground truth, or z to 0, otherwise. To
avoid over-fitting, we use ten-fold cross validation to estimate
~ps in the training. During test, we set λ to either 1 if we are
experimenting with the fusion model fixed, i.e., using only
the training samples, or λ = 0.80 otherwise. We evaluated
lambda in 0.95, 0.90, 0.80, 0.70 and we found 0.80 to provide
the best results. In the test, z is set as:

z =

{
max(~pi), if ŷ

(
argmaxi(~pi)

)
= ŷ
(
argmaxi(~p

s
i )
)
,

1−max(~pi), otherwise.

The idea is to update δi,b,s using z = max(~pi) calculated
by the fusion model if the sensor pipeline predicted correctly,

and z = 1 − max(~pi), otherwise. In case the CNN pipeline
from sensor s and the fusion predicted differently from each
other, we also update δi,b,s with max(~pi) for i given by
arg maxi(~pi). Finally, after each update, we normalize δi,b,s
such that the probability over all i given b and s sums to 1.

4. EXPERIMENTAL RESULTS

We evaluate DyFusion on the VAIS dataset [3], which con-
sists of 2, 865 cropped maritime vessel images (1, 623 RGB
and 1, 242 IR). An IR/RGB pair of a sample from VAIS
is illustrated in Fig. 1. The RGB and IR images are syn-
chronously captured from a pair of fixed cameras on land.
Vessel images are captured in close distance, occasionally
with the vessel docked at a pier such that high-resolution im-
ages are present in the dataset. Vessels may also appear far
in open-sea such that there are small blurred images in the
dataset. The number of pixels ranges from 644 to 4.47 million
for RGB images and from 594 to 0.13 million for IR images.

The images are captured at various times of day, including
dusk and dawn, such that some RGB images may appear dim
and hard to recognize even with manual inspection. The au-
tomatic identification system (AIS) from nearby vessels and
manual inspection are used to annotate the VAIS dataset. The
dataset is split into 539 RGB/IR pairs and 334 singletons for
training and 549 pairs and 358 singletons for the test. We
use the average of accuracy per vessel label as the evaluation
measurement following the VAIS protocol.

We compare our approach with three baselines: summing
ps from RGB and IR (called RGB+IR), convex combination
of RGB and IR with 0.8 weight to RGB (0.8RGB+0.2IR), and
the convex combination of RGB, transformations (T) and IR
(called 0.06(RGB+T)+0.5IR). Weights are computed by max-
imizing the test accuracy as the upper-bound of the baseline.
We also evaluated DyFusion using only training samples to
compare with other works in the literature (λ = 1).

The following is the process we use to assess the dynamic
aspect of DyFusion. We initialize the probabilistic model
with the validation data according to Section 3. Then, we
set λ = 0.8 and run DyFusion once for each test sample. We
modify the test samples by reducing the scale, the contrast or
the signal to noise ratio (SNR) of either RGB or IR (only one
sensor each time). The modifications change the scale, con-
trast, and noise (in this order, one variable each time) from
their original values to the worst-case scenario and then back
to their original value. The goal is to evaluate if DyFusion can
recover from the worst-case scenario and if the performance
does not degrade over time.

In the dynamic experiments, the test images are scaled
down to 1.00, 0.75 and 0.50 of the input size. Contrast
changes by applying gamma normalization to the image with
gamma in (1, 2.5, 5, 10, 15, 20, 25). SNR changes by sum-
ming random values with zero mean and standard deviation in
(0, 1, 5, 10, 15) to the pixel intensities. We repeat each exper-
iment 30 times and we report the 0.95% confidence interval.
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Fig. 2: DyFusion and baseline accuracy in different experiments.
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Fig. 3: DyFusion accuracy per contextual variable.

Baseline comparison. Results from DyFusion and the base-
line approaches are shown in Fig 2. The simple approach
of adding RGB and IR probabilities have the worst per-
formance. Introducing weights to RGB and IR probabil-
ities in 0.8xRGB+0.2xIR increases the accuracy by about
10 percentage points (p.p.). Adding the simulated sensor
data in (0.06x(RGB+T)+0.5xIR) slightly increases the accu-
racy (about 2 p.p.) with the accuracy dropping lower than
0.8xRGB+0.2xIR in two situations: when the RGB is scaled
down and when the contrast decreases. Adding contextual
information (DyFusion) addresses most of the issues with
(0.06x(RGB+T)+0.5xIR) by increasing the mean class accu-
racy by about 5 p.p. Notably, the accuracy of DyFusion never
drops below any other approach. DyFusion is also surpris-
ingly stable and it recovers the initial recognition performance
after each worst-case scenario.
Context information evaluation. Fig. 3 decomposes the per-
formance of DyFusion for each contextual variable. We ob-
serve more variance in the results for individual context vari-
ables compared to the combination. The symmetry, contrast
and activation norm present similar performances. The im-
age size provides the best individual performance and, inter-
estingly, it converges to the same performance as the com-
bination after some iterations. Upon inspection, we observe
some correlation between image size and a few vessel labels
(docked cargo ships have larger images) which can explain
this result. Combining all four contextual variables provides
the best accuracy for almost all scenarios.
Random samples. Instead of providing modified samples in
sequence to DyFusion, we evaluate the scenario where ran-
dom modifications are applied to either the RGB or the IR
image (only one sensor each time, selected randomly). The
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Fig. 4: Mean class accuracy for 54 experiments where random scale,
SNR and contrast values are applied to test samples.

Method Mean class accuracy
DyFusion (λ = 0.8) 0.882± 0.002
DyFusion (λ = 1.0) 0.873± 0.002
CNN+Gnostic Fields [3] 0.874
MFL (feature-level) + ELM [21] 0.876

Table 2: Comparison with other results reported on the VAIS dataset.

random modifications can be any combination of scale, SNR,
and contrast values among the values presented in the 5th
paragraph of Section 4. We run the experiment 54 times on
all test samples without re-training DyFusion. Each time, we
pick a different scale, contrast and noise parameter for the test
samples. Results of the 54 experiments are in Fig. 4 and we
conclude that, even in a completely random scenario, DyFu-
sion is able to present a better performance on average.
Literature comparison. DyFusion with λ = 1 presents ac-
curacy similar to the ones reported for the VAIS dataset (Ta-
ble 2). Updating the fusion model on each test sample with
λ = 0.8 results in a consistent slightly better result (about
1 p.p., difference of 7 samples classified correctly). The
“medium-other” is the worst performing class with 0.62 accu-
racy3 which can be explained by the mixture of different types
of vessels under the same label. Most misses are also with the
pier as background which may be confusing the CNN.

5. CONCLUSIONS
We investigated simulating sensors using image transforma-
tions which is shown to improve the results. To avail of the
additional data from the multiple sensors, we proposed a fu-
sion approach that estimates the probability that a prediction
from a sensor is correct based on contextual information. By
using both simulated sensor data and contextual information,
we showed improved results compared to the baseline ap-
proaches. Finally, we demonstrated that the fusion approach
can be updated on-the-fly using test samples and that it can
recover from “hard” scenarios. In future works, we plan to
investigate DyFusion’s performance in other tasks and with
different sensors.
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